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Abstract
There is great value to use of structural neuroimaging in the assessment of Alzheimer’s disease

(AD). However, to date, predictive value of structural imaging tend to range between 80% and

90% in accuracy and it is unclear why this is the case given that structural imaging should parallel

the pathologic processes of AD. There is a possibility that clinical misdiagnosis relative to the gold

standard pathologic diagnosis and/or additional brain pathologies are confounding factors contrib-

uting to reduced structural imaging classification accuracy. We examined potential factors

contributing to misclassification of individuals with clinically diagnosed AD purely from cortical

thickness measures. Correctly classified and incorrectly classified groups were compared across a

range of demographic, biological, and neuropsychological data including cerebrospinal fluid bio-

markers, amyloid imaging, white matter hyperintensity (WMH) volume, cognitive, and genetic

factors. Individual subject analyses suggested that at least a portion of the control individuals mis-

classified as AD from structural imaging additionally harbor substantial AD biomarker pathology

and risk, yet are relatively resistant to cognitive symptoms, likely due to “cognitive reserve,” and

therefore clinically unimpaired. In contrast, certain clinical control individuals misclassified as AD

from cortical thickness had increased WMH volume relative to other controls in the sample, sug-

gesting that vascular conditions may contribute to classification accuracy from cortical thickness

measures. These results provide examples of factors that contribute to the accuracy of structural

imaging in predicting a clinical diagnosis of AD, and provide important information about consider-

ations for future work aimed at optimizing structural based diagnostic classifiers for AD.
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1 | INTRODUCTION

Alzheimer’s Disease (AD) is the most common form of dementia in

older adults and is characterized by significant loss or decline in mem-

ory, problems in learning, and other cognitive abilities (Bäckman, Jones,

Berger, Laukka, & Small, 2004; Burns and Iliffe, 2009; Carlesimo and

*Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.

edu). As such, the investigators within the ADNI contributed to the design

and implementation of ADNI and/or provided data but did not participate in

analysis or writing of this report. A complete listing of ADNI investigators can

be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf
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Oscar-Berman, 1992; Dubois et al., 2014; Holtzman, Morris, & Goate,

2011; McKhann et al., 1984, 2011; Querfurth and LaFerla, 2010). The

current gold standard for a conclusive diagnosis of AD is through post-

mortem examination to identify the disease-defining regional patterns

of neurofibrillary tau tangles and amyloid plaque deformities in the

brain (Arnold, Hyman, Flory, Damasio, & Van Hoesen, 1991; Braak and

Braak, 1991; Brun and Gustafson, 1976; Hardy, 2006; Hyman et al.,

2012; Montine et al., 2012; Selkoe and Hardy, 2016). Mild cognitive

impairment (MCI) is considered as a potential intermediate stage

between normal aging and AD. Individuals with an MCI diagnosis have

an increased risk of developing AD and conversion rate is reported to

be approximately 10%–15% per year (Petersen et al., 2001). Although

MCI is known to be a clinically heterogeneous condition, clinical diag-

nosis of probable AD is assumed to be a more stable condition that can

be achieved with reasonable accuracy relative to the pathologic gold

standard (Joachim, Morris, & Selkoe, 1988; Lopez et al., 2000). How-

ever, clinical misdiagnosis relative to pathology can be substantial and

depends on several factors. For example, a recent review across a total

of 919 samples with at least one clinical visit and autopsy demon-

strated that clinical diagnosis of probable and possible AD has a sensi-

tivity ranged from 70.9% to 87.3% while specificity ranged from 44.3%

to 70.8% relative to the pathological diagnosis (Beach, Monsell, Phillips,

& Kukull, 2012). The implication of this is that there is a relative uncer-

tainty in the clinical diagnosis of AD as compared to the neuropatho-

logical diagnosis. Additionally, clinical diagnoses are often achieved late

in the disease process when substantial brain tissue damage has

resulted in noticeable cognitive deficit and other symptoms. Early clini-

cal diagnosis is likely to have greater inaccuracy relative to the neuro-

pathologic criteria (which is why diagnosis of MCI due to AD in the

absence of biomarkers is particularly difficult). Given potential for clini-

cal misdiagnosis and the need for early diagnostics, great emphasis has

been put towards neuroimaging approaches for robust diagnosis of

AD, prior to symptom development.

Structural imaging procedures have been successful in AD diagnos-

tics (Chetelat and Baron, 2003; Frisoni, Fox, Jack, Scheltens, & Thomp-

son, 2010; Park and Moon, 2016; Teipel et al., 2013). This is due to the

fact that structural atrophy mirrors patterns of the characteristic

regional pathology of this condition (Jack, Petersen, O’brien, & Tanga-

los, 1992; Jack et al., 1997; Scheltens et al., 1992). Several prior studies

have applied structural imaging procedures in the later as well as ear-

lier, and “preclinical” (e.g., MCI) stages of the disease (Dickerson et al.,

2009; Eskildsen et al., 2013; Fotenos, Snyder, Girton, Morris, & Buck-

ner, 2005; Jack et al., 1999; Killiany et al., 2000, 2002; Scheltens, Fox,

Barkhof, & De Carli, 2002). Given current goals of clinical trials for

identifying individuals in the earliest stages of disease, structural imag-

ing could be advantageous as an initial screen for molecular procedures

such as positron emission tomography which is currently used but

costly and invasive.

AD detection using machine learning and magnetic resonance

imaging (MRI) is a promising area of research. Support vector machines

(SVM) is the most widely used procedure in neuroimaging studies to

classify AD (Aguilar et al., 2013; Cuingnet et al., 2011; Kl€oppel et al.,

2008; Magnin et al., 2009; Salvatore, Battista, & Castiglioni, 2016;

Schmitter et al., 2015; Vemuri et al., 2008; Wolz et al., 2011). Although

relatively successful, review of prior work demonstrates that there

seems to be a “hard” limitation to accuracy with most studies reporting

a range between 80 and 90%. There are two likely explanations for this

limitation. First, to our knowledge, no prior work has been performed

using a gold standard pathologic diagnosis and therefore all studies will

have some degree of clinical misdiagnosis that contributes detrimen-

tally to both the training and testing phases of classification. Second, it

is likely that biological variability due in part to aging and other health

and disease factors contribute to each individual’s pattern of cortical

thinning in a manner that may confound classification. To our knowl-

edge, no prior studies have examined how these many factors contrib-

ute to machine learning classification accuracy of AD from structural

MRI, however, recent studies have uncovered the need to consider age

as a confounding factor contributing to misclassification of individuals

with AD (Dukart et al., 2011; Falahati et al., 2016). Little is currently

known however about misclassification of AD from structural MRI

when age is removed as a factor.

Current strategies for therapeutic clinical trials aim to identify indi-

viduals in the earliest stages of AD. Such a task should be greatly

enhanced by structural imaging, yet it is critical to know factors that

influence classification based on brain structure alone. Although it is

possible to enhance classification through overfitting (e.g., including a

range of variables in the classifier that are not thought to be directly

related to AD pathology), this would in fact decrease the pathologic

accuracy of the classification by including individuals with impairment

due to other etiologies which would confound therapeutic trials aimed

specifically at AD pathology. The goal of our work was to define factors

that contribute to the known 10%–20% misclassification from struc-

tural MRI, as opposed to achieving the greatest possible accuracy in

classification. Specifically, we aimed to identify demographic and bio-

logical factors that were most influential on the accuracy of classifica-

tion of individuals with a clinical diagnosis of probable AD exclusively

using regional cortical atrophy patterns given known links between

cortical atrophy and regional patterns of AD histopathology. This work

follows on recent efforts to optimally integrate biomarker information

into the early and accurate diagnosis of individuals with pathologic AD

(Falahati et al., 2016; Hwang et al., 2016; Jack et al., 2016; Landau

et al., 2010; Mattsson et al., 2015; Palmqvist et al., 2015).

Structural imaging was achieved with measurements of cortical

thickness based on MRI which has been shown to index pathology in

AD (Bakkour, Morris, & Dickerson, 2009; Dickerson et al., 2009; Lerch

et al., 2008; McDonald et al., 2009; Salat et al., 2011). Cortical thick-

ness measurements are sensitive to subtle degenerative changes mak-

ing this imaging marker an ideal feature for AD classification (de Vos

et al., 2016; Eskildsen et al., 2013; Raamana et al., 2015; Wolz et al.,

2011). Classification performance was examined relative to demo-

graphic factors and biomarkers in misclassified individuals to gain

insight into potential causes of misclassification including age, sex, edu-

cation, Mini Mental State Examination (MMSE), cerebrospinal fluid

(CSF) tau and amyloid-beta, Florbetapir amyloid PET positivity (F-

AV45), APOE4 genotype, scanner type, American National Adult Read-

ing Test (ANART) score, and Rey Auditory Verbal Learning Test
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(RAVLT) scores. We additionally examined the influence of white mat-

ter hyperintensity (WMH) burden on classification given this common

type of brain tissue alteration in both typical aging as well as AD.

WMH are highly prevalent in older adults and in AD and are related to

brain structural measures, and therefore may be an important factor

related to classification accuracy (de Leeuw, 2001; Debette and Mar-

kus, 2010; Hopkins et al., 2006; Mortamais et al., 2013; Murray et al.,

2005; Provenzano et al., 2013; Ylikoski et al., 1995). Such information

could be useful in determining whether misclassification was due to

potential biological variability, clinical misdiagnosis, and/or technical

limitations of the procedures and this information could be used

toward further improvement of structural imaging procedures for the

diagnosis of AD and provide potential insight into mechanisms of vari-

ability in cognitive expression of AD.

2 | MATERIALS AND METHODS

2.1 | Dataset

We used the structural brain MRI scans from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset (adni.loni.usc.edu). The ADNI

was launched in 2003 as a public private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial magnetic resonance imaging, positron emis-

sion tomography, other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of

mild cognitive impairment and early AD. For up-to-date information,

see www.adni-info.org. A total of 406 subjects (269 controls and 137

AD) were considered in this study. Standard 3 T baseline T1-weighted

images were included from the ADNI data set.

Several studies have reported the effect of aging on global and

regional brain changes in controls and AD (Lim, Zipursky, Murphy, &

Pfefferbaum, 1990; Salat, Kaye, & Janowsky, 1999; Salat, Kaye, &

Janowsky, 2001; Salat et al., 2004; Shear et al., 1995; Thompson et al.,

1998). As noted previously, age-related brain changes can potentially

lead to misclassification of younger AD patients and older control indi-

viduals. We therefore created matched control and patient groups for

age and other demographic factors. 100 subjects (50 Controls and 50

AD) matched for age, sex, and education were used in the surface

based cortical thickness analysis and the remaining 306 subjects were

used for classification. Subject demographics for the entire study and

for the matched groups used for cortical thickness study are presented

in Table 1.

2.2 | Cortical thickness measurement

The FreeSurfer image analysis suite version 5.3.0 (http://surfer.nmr.

mgh.harvard.edu) was employed to process the MRI data and compute

cortical thickness measurements. The technical details of cortical

reconstruction and volumetric segmentation performed with the Free-

surfer are described in prior publications (Dale, Fischl, & Sereno, 1999;

Dale and Sereno, 1993; Fischl, Sereno, & Dale, 1999a; Fischl, Sereno,

Tootell, & Dale, 1999b; Fischl and Dale, 2000; Fischl, Liu, & Dale,

2001; Fischl et al., 2002, 2004a, 2004b; Han et al., 2006; Jovicich

et al., 2006; Reuter, Rosas, & Fischl, 2010; Reuter, Schmansky, Rosas,

& Fischl, 2012; Segonne et al., 2004). Briefly, this processing includes

motion correction and averaging of multiple volumetric T1 weighted

images (M. Reuter et al., 2010), removal of nonbrain tissue using a

hybrid watershed/surface deformation procedure (Segonne et al.,

2004), automated Talairach transformation, segmentation of the sub-

cortical white matter and deep gray matter volumetric structures (Fischl

et al., 2002, 2004a), intensity normalization (Sled, Zijdenbos, & Evans,

1998), tessellation of the gray matter white matter boundary, auto-

mated topology correction (Fischl et al., 2001; Segonne, Pacheco, &

Fischl, 2007), and surface deformation following intensity gradients to

optimally place the gray/white and gray/cerebrospinal fluid borders at

the location where the greatest shift in intensity defines the transition

to the other tissue class (Dale et al., 1999; Dale and Sereno, 1993;

Fischl and Dale, 2000). Once the cortical models are complete, a num-

ber of deformable procedures can be performed for further data proc-

essing and analysis including surface inflation (Fischl et al., 1999a,

1999b), registration to a spherical atlas which is based on individual

cortical folding patterns to match cortical geometry across subjects

(Fischl et al., 1999a, 1999b), parcellation of the cerebral cortex into

units with respect to gyral and sulcal structure (Desikan et al., 2006;

Fischl et al., 2004a), and creation of a variety of surface based data

including maps of curvature and sulcal depth. This method uses both

intensity and continuity information from the entire three dimensional

MR volume in segmentation and deformation procedures to produce

representations of cortical thickness, calculated as the closest distance

from the gray/white boundary to the gray/CSF boundary at each ver-

tex on the tessellated surface (Fischl and Dale, 2000). The maps are

created using spatial intensity gradients across tissue classes and are

therefore not simply reliant on absolute signal intensity. The maps pro-

duced are not restricted to the voxel resolution of the original data

thus are capable of detecting submillimeter differences between

groups. Procedures for the measurement of cortical thickness have

been validated against histological analysis (Rosas et al., 2002) and

manual measurements (Kuperberg et al., 2003; Salat et al., 2004).

Thickness measurements were mapped on the inflated surface of each

participant’s reconstructed brain (Dale et al., 1999; Fischl et al., 1999a,

1999b). This procedure allowed visualization of data across the entire

cortical surface (i.e., both the gyri and sulci) without interference from

cortical folding. Maps were subsequently smoothed using a circularly

symmetric Gaussian kernel across the surface with a full-width-half-

maximum (FWHM) of 10 mm. Next, cortical maps were averaged

across participants using a nonrigid high-dimensional spherical

TABLE 1 Subject demographics from the ADNI dataset

Entire study
Cortical thickness
study

Control AD Control AD

Number of subjects 269 137 50 50

Sex (Female/Male) 149/120 58/79 25/25 25/25

Age, years (mean) 72.86 74.16 72.81 72.77

Education, years (mean) 16.58 15.79 16.98 16.58
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averaging method to align cortical folding patterns (Fischl et al., 1999a,

1999b). This procedure provides accurate matching of morphologically

homologous cortical locations among participants on the basis of each

individual’s anatomy while minimizing metric distortion, resulting in a

mean measure of cortical thickness at each point on the reconstructed

surface.

2.3 | Statistical analysis

Classifier features were selected as regions showing statistical thinning

in the AD group compared to the control group. Whole-brain surface-

based general linear models were performed at each surface vertex

(10,242 vertices per hemisphere). Resulting z-statistic maps were

thresholded at p< .05. Multiple comparison correction was then per-

formed using a clusterwise procedure (Hagler, Saygin, & Sereno, 2006).

Surface data were corrected for multiple comparisons with a threshold

of p< .0001 for both left and right hemispheres.

2.4 | Support vector machine classifier

Support vector machine is a commonly utilized supervised, multivariate

classification method. The problem of AD detection using SVM was

formulated as a binary classification problem. In brief, given an N obser-

vation samples {xi, yi}, where xi5 [xi1, . . ., xin] � <n and yi � [1, 21] is

the coded group label. If the sample belongs to that of an AD patient

then the coded group label yi is defined as one (yi 51), otherwise, sam-

ple belongs to control where the coded group label is (yi521). The

SVM classifier finds a hyperplane maximizing the margin between

groups. More details on SVM can be found in (Cortes and Vapnik,

1995; Sch€olkopf and Smola, 2002). In this study, we used the SVM

implementation publicly available in LibSVM (csie.ntu.edu.tw/�cjlin/

libsvm). To determine a suitable cost parameter C and kernel parameter

g of the nonlinear Gaussian function in the SVM classifier, the parame-

ter values are optimized using a cross-validation via grid-search

approach (Chang and Lin, 2011). The grid search was performed over

the ranges C5225, 222, . . ., 215, g52215, 2213, . . ., 25. The optimized

set of parameters was then used to train the SVM classifier using the

training set. The cortical thickness values obtained using surface based

thickness analysis were used as features in the SVM and classifier was

trained to predict the group membership on the remaining 306 sub-

jects. A total of 22 features (cortical thickness regions) were used for

classification. We used the 10-fold cross-validation to estimate the

SVM classifier performance. During each fold, the classifier was devel-

oped using 90% of the subjects as training data and remaining 10% of

the subjects as testing data. For better generalization, the classifier was

tested for 100 different random combination of training and testing

datasets.

3 | RESULTS

3.1 | Cortical thickness comparison between controls

and AD

Cortical thickness measurements were obtained using FreeSurfer on

100 subjects (50 Controls and 50 AD) matched for age, gender, and

education. As expected, group differences in cortical thickness

between the controls and AD were robust and are demonstrated in

Figure 1.

Regions exhibiting significantly reduced cortical thickness in AD

compared to controls following cluster-based multiple comparison cor-

rection based on the Freesurfer Desikan/Killiany parcellation atlas

(Desikan et al., 2006) were entorhinal cortex, precuneus cortex, fusi-

form gyrus, banks of the superior temporal sulcus, inferior parietal cor-

tex, supramarginal gyrus, superior frontal gyrus, inferior temporal gyrus,

superior parietal cortex, superior temporal gyrus, middle temporal

gyrus, rostral middle frontal gyrus, caudal middle frontal gyrus, and pars

opercularis. Mean cortical thickness within each significant region was

extracted from the remaining 306 subjects, and used as an input to the

SVM classifier.

3.2 | Performance of SVM classifier

To illustrate the performance of the SVM classifier, mean cortical thick-

ness values for each of the significant regions of interest were

extracted from the remaining 306 subjects and used as features. A total

of 22 features (cortical thickness regions) were used for classification.

We used the 10-fold cross-validation to obtain an unbiased estimate of

the classifier performance. During each fold the classifier was

FIGURE 1 (a) Surface maps of the cortical thickness differences between the controls and AD groups smoothed on the surface with an
approximate Gaussian kernel of a full-width-half-max (FWHM) of 10 mm (p< .05 uncorrected). (b) Surface maps of the cortical thickness dif-
ferences after the correction for multiple comparisons (thresholded at p< .0001) [Color figure can be viewed at wileyonlinelibrary.com]
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developed using data from 90% of the subjects and tested using data

from the remaining 10% of the subjects. For better generalization, the

classifier was tested for 100 different random combination of training

and testing datasets. The sensitivity, specificity, and accuracy were cal-

culated to measure the performance of the SVM classifier. Sensitivity is

defined as the proportion of true positives that are correctly identified

by the test and specificity is defined as the proportion of true negatives

that are correctly identified by the test. Accuracy is calculated as the

proportion of true results (both true positives and true negatives) by

the test. In our experiments, mean accuracy of 90.32% (standard devia-

tion 4.02), mean sensitivity of 0.96 (standard deviation 0.03), and mean

specificity of 0.76 (standard deviation 0.14) were obtained using the

SVM classifier.

Hippocampal volume has been used in several prior classification

studies and is very effective to achieving classification to similar

degrees as other structural measures. We therefore performed a sec-

ondary classifier analysis incorporating this imaging information with

the initial classifier. Inclusion of hippocampal volume (corrected for

ICV) as a feature increased the accuracy by 2.43%; however, we did

not include hippocampal volume as a feature in the final classifier. This

is because the goal of the work was to utilize structural features that

are believed to be most related to the primary pathologic features in

AD for a greater potential ability to identify individuals with true AD

pathology. Our prior work demonstrated that hippocampal volume

statistically factors with white matter lesions (WMH) which are not

considered a primary pathologic feature of AD (Coutu et al., 2016,

2017). Inclusion of hippocampal volume in the classifier may slightly

improve accuracy with regard to clinical diagnosis, but this may not be

concordant with the pathologic diagnosis of AD. We therefore did not

include hippocampal volume to attempt to minimize vascular related

variance in the classification.

We additionally performed a classification analysis using whole-

cortex surface measurements. Cortical thickness values from the

whole-cortex were used as features to train an SVM classifier with an

accuracy of 89.27% (standard deviation 3.49), sensitivity of 0.97

(standard deviation 0.02), and specificity of 0.74 (standard deviation

0.08). Although in the high-performance range, results indicate that

cortical thickness could not perfectly classify clinical group membership

using the SVM classifier.

3.3 | Analysis to determine factors contributing to

misclassification

The results obtained using SVM classifier demonstrate that �10% of

the subjects are misclassified based on structural imaging compared to

their clinical diagnosis based on thickness values alone. These findings

show that the procedures are robust for a large majority of the sample

and therefore additional information about failures would better inform

future implementations of SVM. Follow-up analyses examined poten-

tial factors that may contribute to any individual being misclassified. As

noted, limitations in accuracy are potentially related to technical restric-

tions, incorrect clinical diagnosis or the confounding effects of demo-

graphic and/or health disparities rather than the method used for

classification (Falahati, Westman, & Simmons, 2014). In the following

analyses, we therefore compared variables of interest across four

groups: controls correctly classified as controls (classified CN), controls

classified as AD (misclassified CN), AD correctly classified as AD (classi-

fied AD), and AD classified as controls (misclassified AD).

Demographic information. Initial analysis demonstrated that groups

differed with regard to age as expected from prior work. Specifically,

older control individuals were more likely to be classified as AD. How-

ever, age was not the only factor contributing to misclassification. We

therefore created age and sex matched subsets of the four groups clas-

sified CN, misclassified CN, classified AD, and misclassified AD for sub-

sequent comparison.

Cortical thickness. Given that the SVM is based on regional patterns

of cortical thinning, it was expected that groups classified as having AD

would have generally thinner cortex than groups classified as control.

However, it is unknown whether these results would be regionally

selective or more global. Thus, although a somewhat circular analysis

(given that the classifier was based on thickness values) we next com-

pared age and sex matched groups using surface based thickness gen-

eral linear models to better understand the spatial nature of the

thickness patterns in the misclassified groups for illustrative purposes.

Surface maps of the cortical thickness differences between cor-

rectly classified controls and misclassified controls revealed reduced

cortical thickness in misclassified controls in several cortical regions

(Figure 2a) including inferior parietal cortex, superior frontal gyrus,

medial orbital frontal cortex, inferior parietal cortex, superior temporal

gyrus, superior frontal gyrus, superior parietal cortex, entorhinal cortex,

precuneus, postcentral gyrus, middle temporal gyrus, pars orbitalis, pre-

central gyrus, and lateral occipital cortex. In contrast, thickness differ-

ences between correctly classified AD and misclassified AD revealed

that correctly classified AD had significantly reduced thickness in sev-

eral regions including overlap with most of the classifier regions.

Thicker cortex in misclassified AD was found in supramarginal gyrus,

middle temporal gyrus, insula, inferior temporal gyrus, precentral gyrus,

lateral orbital frontal cortex, superior frontal gyrus, precentral gyrus,

superior parietal cortex, lingual gyrus, inferior parietal cortex, pars trian-

gularis, entorhinal cortex, middle temporal gyrus, lateral occipital cortex,

fusiform gyrus, and pars orbitalis (Figure 2b).

Cortical thickness comparison between misclassified control and

correctly classified AD demonstrated that although the misclassified

controls had reduced cortical thickness relative to correctly classified

controls (Figure 2a), they still had significantly thicker cortex than cor-

rectly classified AD in typical AD pathology regions. The regions

included entorhinal cortex, middle temporal gyrus, fusiform gyrus, infe-

rior temporal gyrus, supramarginal gyrus, middle temporal gyrus, infe-

rior parietal cortex, and parahippocampal gyrus (Figure 2c) suggesting

that any pathology in those regions may be an earlier stage and/or a

different pathophysiological process. The misclassified controls have

thinning in classifiers regions (regions sensitive to AD pathology). Com-

pared to correctly classified controls, it would seem that this is a more

global degenerative effect, and compared to correctly classified AD,

the AD sensitive regions are relatively more affected in AD compared

to the misclassified controls. This suggests that addition of features of
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the proportion of change in AD regions compared to other non-AD-

specific regions could be an important addition to the classification pro-

cess. Misclassified AD compared to correctly classified controls, exhib-

ited greater cortical thickness in selective regions overlapping the

classifier regions (Figure 2d). The regions including parahippocampal

gyrus, superior temporal gyrus, inferior parietal cortex, entorhinal cor-

tex, middle temporal gyrus, precuneus cortex, and supramarginal gyrus

potentially suggest an earlier stage of disease pathology. The misclassi-

fied AD compared to controls has a pattern of thinning that is similar

to the AD classifier regions. In theory, these individuals should have

been detected by the classifier. It is possible that these individuals are

therefore in an earlier stage of pathology and may require additional

features to be accurately classified.

We next examined a series of variables that are associated with a

diagnosis or enhanced risk for Alzheimer’s disease including MMSE score,

CSF tau and amyloid-beta, (18) F-AV45, APOE4 genotype, scanner type,

and WMH volume. We used WMH available through the ADNI data-

base, calculated from fluid attenuated inversion recovery (FLAIR) and T1-

weighted images using a Bayesian segmentation method (DeCarli, Mur-

phy, Teichberg, Campbell, & Sobering, 1996; DeCarli et al., 1999; DeCarli,

Pauline, & Evan, 2013). The WMH volume was expressed as a portion of

intracrainial volume (WMH/ICV 3 100) to correct for head size. CSF tau

was used to pick extreme subjects that were unlikely to have a patho-

logic diagnosis matching the clinical diagnosis to illustrate how the factors

of interest contribute to clinical classification accuracy. A single misclassi-

fied control subject (ADNI subject Id: 127_S_5185) was selected based

on having the greatest CSF tau levels in that group (levels suggestive of

AD pathology) represented as red circle and a single misclassified AD

subject (ADNI subject Id: 052_S_4959) was selected based on having the

lowest CSF tau levels in that group (levels suggestive of lack of tau

pathology) represented a green circle for example comparisons. These

single subjects are not presented as representative of the group, but sim-

ply as examples of the individual variability within the misclassified group.

Specifically, we aimed to examine in detail example individuals that were

most likely to have biomarker data that was inconsistent with their clini-

cal diagnosis as potentially salient examples of factors influencing struc-

tural imaging classifier accuracy. Plots showing each of these markers

across the four groups are demonstrated in Figure 3.

We also examined educational level, ANART score, and RAVLT

scores to assess the verbal learning, memory performance, and premor-

bid verbal intelligence of the groups. Plots showing each of these fac-

tors across the four groups are demonstrated in Figure 4.

FIGURE 2 Surface maps of the cortical thickness differences between the classified and misclassified groups smoothed on the surface
with an approximate Gaussian kernel of an FWHM of 10 mm [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Plots showing the distribution of CSF biomarkers, amyloid imaging, white matter hyperintensity, cognitive, genetic factors, and
scanner types. A single misclassified control subject (ADNI subject Id: 127_S_5185) is represented as red circle and a single misclassified AD
subject (ADNI subject Id: 052_S_4959) is represented as green circle. The symbol * indicates significantly different. AD5 classified AD,
mAD5misclassified AD, CN5 classified control, mCN5misclassified control [Color figure can be viewed at wileyonlinelibrary.com]
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At the group level, CSF tau and amyloid-beta were not significantly

different between classified and misclassified subjects within each

group type (in AD and in controls compared to misclassified within

group). Analysis of WMH volume suggested that misclassified controls

had a significantly greater WMH burden compared to correctly classi-

fied controls (p5 .011, by two-sample t test) (Table 2). We therefore

performed an additional classifier analysis incorporating white matter

hyperintensity features with the initial classifiers. An accuracy of 91%,

sensitivity of 0.98, and specificity 0.75 was obtained using the SVM

classifier. Results suggest that inclusion of WMH features doesn’t have

a major impact on classification performance; however, there are sev-

eral ways that WMH could provide additional classification information

including use of spatial properties which differ in individuals with AD

compared to controls. Thus, although these factors differ in the mis-

classified groups to some degree, the degree of heterogeneity prevents

useful simple incorporation into the SVM classification procedure

although future work will explore optimal parameters necessary for

such incorporation.

FIGURE 4 Plots showing the education level, ANART, and RVALT scores. Single misclassified control subject (ADNI subject Id:
127_S_5185) is represented as red circle and a single misclassified AD subject (ADNI subject Id: 052_S_4959) is represented as green circle.
The symbol * indicates significantly different. AD5 classified AD, mAD5misclassified AD, CN5 classified control, mCN5misclassified
control [Color figure can be viewed at wileyonlinelibrary.com]
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Analysis of MMSE score revealed significant difference between

the correctly classified controls and misclassified controls (p5 .045).

The distribution of APOE4 (positive/negative for at least one e4 allele)

and (18) F-AV45 uptake (standardized uptake values ratio (SUVR)>

1.11: florbetapir positive otherwise negative) were not different

between the groups. We examined the influence of scanner types on

the groups and found that distribution of Siemens and Philips scanners

were not different between the classified and misclassified subjects.

The variations attributable to individual scanner types may have less

effect on the groups except for a greater representation of GE scanner

type in the misclassified control group as shown in Figure 3. Although

these data provide information about trends at the group level, within

group variability across measures suggest heterogeneity supporting

additional analyses of individual subjects from the sample.

ANART score, typically used as an estimate of premorbid verbal

intelligence and serves as a proxy of cognitive reserve (Katzman et al.,

1988; Lo and Jagust, 2013; McGurn et al., 2004; Schmand, Smit, Geerl-

ings, & Lindeboom, 1997; Stern et al., 1994; Stern, 2012). ANART

score was significantly different between the misclassified controls and

correctly classified controls (p5 .001). Analysis of RAVLT score

revealed immediate recall scores were significantly different between

the correctly classified controls and misclassified controls (p5 .048)

and also RAVLT learning scores were significantly different between

the correctly classified AD and misclassified AD (p5 .042). The RAVLT

forgetting score, percentage of forgetting, and education level were

not significantly different between classified and misclassified subjects.

In summary, the misclassified controls had higher ANART and poorer

RAVLT performance relative to correctly classified controls. These

results suggest that some portion of the misclassified controls may in

fact be in early stages of impairment, potentially masked due to higher

premorbid function. Misclassified AD may be in the earlier stages of

impairment relative to correctly classified AD. Although the thinning

pattern is indicative of early AD pathology, it should be noted that

misclassified AD did not differ from correctly classified AD with regard

to biomarker levels or cognition. It is unclear why this is, however, it is

possible that the cortical thickness measures are more sensitively quan-

tifiable than the cognitive or CSF values (i.e., a range of thickness val-

ues related to variation in pathology are linked to similar cognitive and

CSF values). Alternatively, it is possible that the differences in thickness

are linked to subtle differences in white matter lesion volumes, or simi-

larly, that the misclassified AD are generally healthier in various other

domains that may influence cortical thickness whereas the typical AD

patient is less healthy generally.

At the individual subject level, the misclassified control (misclassi-

fied control with the highest CSF tau levels across all misclassified con-

trols) had MMSE of 30, APOE4 positive, (18) F-AV45 positive, 0.51%

white matter hyperintesity, 132 pg/ml amyloid-beta, and 156 pg/ml

tau. One sample t test presented in Table 3 showed significant differ-

ence between the single misclassified control subject and correctly

classified controls across several parameters including increased CSF

concentration of tau (selected for this but in the misclassified group),

decreased concentration of CSF amyloid-beta, increased WMH,

APOE4 and (18) F-AV45 uptake positivity, all considered to be typical

characteristic factors related to presence or risk for AD. The misclassi-

fied control had an education of 20 years, ANART total score (no of

errors) of 2, RAVLT immediate recall score (total of 5 trails) of 51, learn-

ing score (6th trial) of 10, forgetting score (30 min delay) of 1, and per-

centage of forgetting 7.14%. RAVLT score in this individual suggested

subtle impairment, however, this individual did not convert to MCI or

AD during the course of ADNI participation (from baseline visit to 24

months visit). These consistent results indicates the possibility of clini-

cal misdiagnosis relative to pathologically positive AD in certain individ-

uals in the control group, likely due substantially to “cognitive reserve”

based in high education and premorbid intelligence. The individual mis-

classified AD had lower hyperintensity burden, and greater MMSE than

correctly classified AD. The individual had high education and premor-

bid intelligence, which likely contributed to some preserved cognitive

capacity. Taken together, it is possible that this individual is impaired

for reasons other than AD pathology.

The misclassified AD subject had MMSE of 25, was APOE4 posi-

tive, (18) F-AV45 positive, 119 pg/ml amyloid-beta, and 42 pg/ml tau,

but WMH of 0.47%. The misclassified AD had an education of 20

years, ANART score of 6, RAVLT immediate recall score of 26, learning

score of 1, forgetting score of 5, and percentage of forgetting 83.33%.

The misclassified AD remained fairly stable cognitively (memory loss

prominent with poor insight) and functionally from baseline visit

throughout their participation in ADNI (to 12 months visit). This exam-

ple is somewhat inconsistent in having low tau but also low amyloid

CSF values (tau levels would be expected to be high and amyloid low

in AD). Findings suggest that given the high general prevalence of

WMH in AD, patients with less WMH are likely to show altered pat-

terns of cortical thinning compared to those who do not have WMH

which may contribute to misclassification. Overall, the findings from

the individual participant analyses demonstrate that individuals within

the sample have clusters of demographic, biomarker, and neuropsycho-

logical profiles that are inconsistent with a match between the clinical

TABLE 2 Two-sample t test analysis between classified and mis-
classified subjects within each group type

Classified controls
vs misclassified
controls, p value

Classified AD
vs misclassified AD,
p value

Tau .728 .990

Amyloid-beta .564 .195

WMH .011* .298

MMSE .045* .272

Education .777 .346

ANART .001* .056

RAVLT (immediate) .048* .054

RAVLT (learning) .883 .042*

RAVLT (forgetting) .969 .213

RAVLT (forgetting %) .754 .253

Note. * Significantly different.
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diagnosis and likely existence of AD pathology and also highlight fac-

tors that modulate the efficacy of the structural classification.

4 | DISCUSSION

There is strong interest in AD “diagnostics” using machine learning and

structural MRI (Cho et al., 2012; Coup�e et al., 2012; Davatzikos, Bhatt,

Shaw, Batmanghelich, & Trojanowski, 2011; Falahati et al., 2014;

Kl€oppel et al., 2015; Liu et al., 2012; Schouten et al., 2016; Westman

et al., 2011a, 2011b; Westman, Muehlboeck, & Simmons, 2012; Zhang

et al., 2011). These studies have demonstrated the obvious utility of

structural imaging in this endeavor. Several studies have shown that

hippocampal atrophy is an early indicator of AD (Jack et al., 1999; Kill-

iany et al., 2002; Rana et al., 2017; Schr€oder and Pantel, 2016). The

hippocampus has therefore been used in several prior classification

studies (Chupin et al., 2009; Colliot et al., 2008; Frisoni et al., 1999)

and is very effective to achieving classification to similar degrees as

other structural measures. However, most prior studies aimed to

enhance classification accuracy relative to clinical diagnosis through the

optimal selection of classifiers for matching the clinical label. Little is

currently known about factors that contribute to misclassification of

AD purely from structural MRI which should mirror the primary pathol-

ogies of AD. The goal of this work was to determine factors that con-

tribute to the mismatch between structural classification and clinical

diagnosis through examination of a range of demographic, biological,

and neuropsychological data. The overall findings demonstrate that in

fact, although a clinical misclassification of �10% was found, the struc-

tural classifier may actually have greater accuracy for a pathologic diag-

nosis (which would be most useful for clinical trials and therapeutics

directed towards primary AD pathology), and also that secondary path-

ologies (such as WMH) influence thickness values in regions overlap-

ping typical AD pathology and therefore the accuracy of classification.

Cortical thickness measurements based on MRI has been shown to

index pathology in AD (Bakkour et al., 2009; Dickerson et al., 2009;

Lerch et al., 2008; McDonald et al., 2009; Salat et al., 2011). In this

study, as expected based on the use of cortical thickness measures in

the SVM classifier, whole surface contrasts of cortical thickness maps

between classified controls and misclassified controls revealed reduced

cortical thickness in misclassified controls compared to correctly classi-

fied controls as shown in Figure 2. However, the regional patterns of

reduced thickness were somewhat distinct from regions showing

strong effects for AD including the regions used in training the classi-

fier and seemed to be more global in nature, at least at the group level.

The need for integration of biomarker information into the diagno-

sis of individuals with pathologic AD has been discussed extensively

(Jack et al., 2016; Mattsson et al., 2015; Palmqvist et al., 2015). These

consensus papers suggest that amyloid-beta biomarkers, tau bio-

markers, and biomarkers of neurodegeneration are necessary to iden-

tify early AD with high accuracy and would be useful to understand

disease pathogenesis and expedite drug development. WMH are com-

mon type of brain tissue alteration in older adults, more prevalent in

AD and are related to brain structural measures and therefore this tis-

sue damage is an important factor related to diagnosis of AD. Several

studies have investigated the association of WMH and cortical atrophy

and generally found a higher degree of cortical atrophy among individ-

uals with higher burden of WMH (Appelman et al., 2009; Capizzano

et al., 2004; Godin et al., 2009; Raji et al., 2012). There is increasing evi-

dence of WMH association with cognitive decline (Prins and Scheltens,

2015; Provenzano et al., 2013; Rieckmann et al., 2016). Recent studies

have demonstrated interactions between WMH and cortical thickness

and cognition (Jacobs, Clerx, Gronenschild, Aalten, & Verhey, 2014;

Seo et al., 2012; Tuladhar et al., 2015). In this study, we found misclas-

sified individuals differed from their correctly classified counterparts on

several of these relevant measures. For example, misclassified controls,

as a group, had a significantly greater WMH burden compared to cor-

rectly classified controls. The controls with more WMH are likely to

show altered patterns of cortical thinning compared to those who do

not have WMH which may contribute to misclassification. These find-

ings suggest that WMH may be used as an additional biomarker for

early and accurate diagnosis of AD. Ongoing studies are exploring the

TABLE 3 One-sample t test analysis between correctly classified group and misclassified single subject within each group type

Misclassified single
control subject

Misclassified single
AD subject

Correctly classified control group
vs misclassified single control
subject, p value

Correctly classified AD group
vs misclassified single
AD subject, p value

Tau (pg/ml) 156 42 <.001 <.001

Amyloid-beta (pg/ml) 132 119 <.001 <.001

WMH (%) 0.51 0.47 <.001 >.05

MMSE 30 25 <.001 <.001

Education 20 20 <.001 <.001

ANART 2 6 <.001 <.001

RAVLT (immediate) 51 26 <.001 <.001

RAVLT (learning) 10 1 <.001 >.05

RAVLT (forgetting) 1 5 <.001 <.001

RAVLT (forgetting %) 7.14 83.33 <.001 >.05
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utility of WMH in classification of AD, however, given that our goal

here was to classify based on features considered to be linked to the

primary pathology of AD, the inclusion of WMH to better match the

clinical diagnosis would not necessarily help in achieving the goal of a

pathologic classification.

Education and premorbid verbal intelligence typically serves as a

proxy of cognitive reserve. Prior studies have shown association of the

cognitive reserve markers with a lower risk of AD and memory decline

(Buckner, 2004; Katzman et al., 1988; Lo and Jagust, 2013; Murray

et al., 2011; Stern et al., 1994; Stern, 2012). Premorbid intelligence

assessed by ANART modifies the relationship between biomarkers of

pathology and cognition in AD with individuals with high cognitive

reserve having greater biomarker abnormalities than those with low

cognitive reserve (Vemuri et al., 2011). This study demonstrates mis-

classified controls had a significantly greater ANART, RAVLT immediate

recall, and MMSE score compared to correctly classified controls. Thus,

cognitive factors have a compensatory function that acts to preserve a

clinical state despite reduced cortical thickness in some control individ-

uals. It is therefore possible that the structural MRI measures provide

an accurate pathologic, but not clinical diagnosis.

One limitation of the current work is that the classification proce-

dure relied on clinical diagnostic information for determination of fea-

tures selected. Although the large majority of participants likely have a

match of their clinical diagnosis with brain pathology, it is possible that

some inaccuracies in diagnosis shifted performance of the classifier to

some degree. Future investigations should consider creation of a classi-

fier based on “high confidence” individuals with diagnoses that are

strongly supported by genetic and CSF biomarker data for optimal

weighting towards classification based on AD pathologic processes. In

the current investigation, a single misclassified control subject was

selected based on having the greatest CSF tau levels in that group and

a single misclassified AD subject was selected based on having the low-

est CSF tau levels in that group for example comparisons. These single

subjects are not presented as representative of the group, but simply

as an example of the individual variability within the misclassified

group. Although we highlight two individuals as an example, full subject

data for all subjects classified and misclassified is provided in Figures 3

and 4. These plots show trends in the data at the group level. As noted,

there are a range of values for correctly classified and misclassified indi-

viduals. This suggests that there is more than one explanation for mis-

classification as we tried to touch on in the current work. A secondary

procedure such as hierarchical clustering could potentially subclassify

the misclassified individuals and provide insight to the types of misclas-

sification that occur in the sample as follow up investigation to the cur-

rent work.

The major conclusions from current work are as follows: (a) WMH

have an important influence on classification accuracy, with individuals

with a clinical diagnosis of AD being more likely to be classified as con-

trol when WMH volume is low, and control individuals being more

likely to be classified as AD when WMH volume is high. (b) At an indi-

vidual level, subjects in the ADNI sample have biomarker evidence of

AD pathology while remaining relatively cognitively resilient and having

a clinical diagnosis of being nondemented. (c) Individuals clinically

diagnosed with AD but misclassified based on cortical thickness pat-

terns may have a pathologic diagnosis inconsistent with AD. These

findings demonstrate the need for integration of biomarker based diag-

nostic criteria as has been described in recent consensus papers and

recent classification work (Jack et al., 2016; Mattsson et al., 2015;

Palmqvist et al., 2015). Here we note the critical contribution of white

matter lesions to biomarker interpretation. A more detailed analysis of

individual level factors across many subjects in the sample will be

important follow up work to the data presented here. Thus, patterns of

cortical thinning alone cannot be the only features to be used in clinical

classification schemes. In the absence of additional biomarker data,

some information regarding premorbid function and WMH burden

must likely be included in these procedures. Additionally, future investi-

gation should be explicit regarding goals of clinical versus pathologic

diagnostic accuracy. Future work will examine the degree to which sub-

groups of individuals can be determined from the misclassified individ-

uals based on clustering of AD and demographic related parameters to

better understand features classes that contribute to classification

accuracy.
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